PERSONALIZED THERAPY TO FURTHER IMPROVE OUTCOMES IN PATIENTS WITH BRAF MUTATED mNSCLC

Dr Priti Agarwal Consultant Medical Oncology Apex Hospital

- □ Understand the role of BRAF in metastatic NSCLC
- Gain awareness of BRAF testing methods and the diagnosis of BRAF+ NSCLC
- Review the clinical data for dabrafenib and trametinib in advanced NSCLC

Introduction to BRAF

The RAS-RAF-MEK-ERK (MAPK) Pathway Plays a Key Role in Cell Proliferation

- The <u>mitogen-activated protein</u> <u>kinase (MAPK) pathway</u> regulates cell signaling from transmembrane growth factor receptors, leading to cell proliferation¹⁻³
- Oncogenic mutations in the MAPK pathway, including <u>BRAF</u> kinase mutations, have been reported in a number of human cancers, including NSCLC²
- BRAF mutations result in constitutive BRAF activation and uncontrolled signaling via the MAPK pathway¹

BRAF Mutations in NSCLC

- BRAF mutations occur in \approx 1% to 4% of all NSCLC adenocarcinomas⁴⁻⁸
- BRAF mutations typically do not overlap with other common mutations in NSCLC (eg, KRAS, EGFR, ALK)⁹
- In contrast to other oncogenic drivers in NSCLC, key patient characteristics/indicators for BRAF-mutated NSCLC have not been well characterized
 - BRAF mutations do not appear to correlate strongly with age, sex, stage at diagnosis, or smoking status. However, some studies suggest that patients with BRAF mutations are more likely to be female or have a history of smoking^{7,10}

Types of BRAF Mutations

- Although V600E is the most common BRAF mutation in NSCLC, occurring in ≈ 50% to 70% of BRAF+ cases, other mutations in BRAF have been identified^{7,10}
- Diversity of BRAF mutations has important implications
 - Different strategies may be required for the targeted treatment of NSCLC bearing V600, non-V600, and/or inactivating BRAF mutations
- In a retrospective analysis of 1046 NSCLC tumors, BRAF mutations were present in 4.9% of adenocarcinomas; 21 of 37 BRAF mutations (56.7%) were V600E, and 15 (43.3%) were non-V600E mutations¹⁰

BRAF Mutations Detected in 37 NSCLC Tumors ¹⁰				
V600E	K601N	D594G	W604R	K601E
L597R	G606A	L597V	G606V	G469V
L597Q	G466V	V600L	G469A	

Patients With BRAF V600E Mutations Have Shorter Median DFS and OS Than Patients Without V600E Mutations¹⁰

- BRAF V600E+ NSCLC has histological features suggestive of an aggressive tumor
- Patients with advanced BRAF V600E+ NSCLC have worse outcomes with platinum-based chemotherapy, including ORR, PFS, and OS, than wild-type patients and patients with non-V600E mutations

Marchetti A, et al. J Clin Oncol. 2011;29(26):3574-3579. Reprinted with permission. © 2011 American Society of Clinical Oncology. All rights reserved.

Outcomes in Patients With BRAF V600E+ NSCLC vs Patients With Wild-Type BRAF⁸

 Patients with advanced BRAF V600E+ NSCLC have worse outcomes with platinum-based chemotherapy, including ORR, PFS, and OS, than wild-type patients and patients with non-V600E mutations

PFS for BRAF V600E–Mutant vs Wild-Type NSCLC With First-Line Platinum-Based Chemotherapy

Clinical Outcomes in Patients With NSCLC on First-Line Platinum-Based Chemotherapy

Endpoint	Wild Type (n = 79)	BRAF V600E (n = 7)	
ORR, %	48	29	
Median PFS, mo	6.7	4.1	
Median OS, mo	15.9	10.8	
Treatment	Majority received chemotherapy		

Reprinted from Cardarella S, et al. Clin Cancer Res. 2013;19(16):4532-4540, with permission from AACR.

For internal distribution only. May not be used, published, or otherwise disclosed without the consent of Novartis.

NSCLCPROMODECK/RAFMEQ/ONCO/28785/28/FEB/2020

Treatment Remains Suboptimal for Patients With BRAF V600+ NSCLC

Approximately one-third of patients remain untreated⁵

- 33% of patients with BRAF V600+ NSCLC receive best supportive care first line
- 57% received best supportive care second line

Doublet chemotherapy is the most common treatment option in BRAF+ NSCLC⁵

 A French registry study showed that 52% of patients with a BRAF mutation received doublet chemotherapy (n = 146)

In patients with driver mutations, targeted therapy can help patients live longer⁴

 Patients identified with a mutation driver not receiving targeted therapy lived 1 year shorter than those who were identified with actionable drivers and treated with targeted therapy

Patients With Nonsquamous NSCLC Without Mutated ALK, EGFR, or ROS1 Currently Receive Chemotherapy or Immunotherapy

Summary of Current Treatment Guidelines for Advanced or Metastatic Disease^{11,12}

Broad Molecular Profiling Includes Identification of BRAF+ Patients

□ Historical approach encourages serial testing with companion diagnostics

□ Current testing paradigm favors broad molecular profiling for all patients¹¹

Current NSCLC Treatment Guidelines Prioritize Precision Medicine

ESMO Consensus¹²

The most recent ESMO clinical practice guidelines recommend broader molecular profiling to identify rare driver mutations, including BRAF, using multiplex/NGS (next-generation sequencing) to ensure that patients receive the most appropriate treatments

NCCN Treatment Guidelines¹¹

2018 NCCN Guidelines strongly endorse broader molecular profiling to identify rare driver mutations using multiplex/NGS (next-generation sequencing) to ensure that patients receive the most appropriate treatments

- EGFR, BRAF, ALK, and ROS1, are currently recommended by NCCN guidelines as the minimum assessment of potential genetic alterations
- Broad molecular profiling can be achieved by companion diagnostic NGS technologies¹¹

Up-Front BRAF Testing Is Needed to Quickly and Efficiently Identify Patients

- Up-front BRAF testing is essential for patients with advanced NSCLC because
 - BRAF does not appear to correlate with any clinical risk factors (eg, age, sex, smoking history)^{7,10}
 - BRAF+ NSCLC may be more aggressive than lung cancers with other mutations or histologies¹⁰
 - Targeting BRAF mutations has demonstrated clinical efficacy in patients with BRAF V600+ NSCLC¹³

Broader molecular profiling can help identify more actionable drivers, such as BRAF V600E, earlier

Clinical Data of dabrafenib + trametinib

Dabrafenib and Trametinib Target Different Kinases in the MAPK Pathway

Trametinib¹⁵

Reversible, highly selective inhibitor of MEK1 and MEK2 kinase activity

Dabrafenib and Trametinib are Approved for the Treatment of BRAF V600+ NSCLC¹⁶⁻¹⁷

DCGI Approved Indication

Dabrafenib in combination with trametinib is indicated for the treatment of adult patients with advanced non-small cell lung cancer (NSCLC) with a BRAF V600 mutation.

Rationale for Combination of Dabrafenib + Trametinib

- Combination therapies that target multiple portions of the MAPK pathway have been developed to overcome resistance to BRAF inhibitor monotherapy¹⁸
- In NSCLC and melanoma, compared with BRAF inhibition alone, BRAF and MEK inhibition has been shown to¹³
 - Synergistically inhibit the MAPK pathway in BRAF V600E+ cell lines
 - Delay resistance to BRAF inhibitors in animal models
 - Inhibit cancer growth more effectively than dabrafenib alone in clinical trials, leading to approval of dabrafenib + trametinibfor the treatment of BRAF V600+ advanced melanoma^{16,19,20}

Phase 2 Study of Dabrafenib + Trametinib in BRAF V600E+ NSCLC

BRF113928 Study Design: a Multicohort, Nonrandomized, Open-Label, Phase 2 Study^{13,25,26}

Dabrafenib + Trametinib in BRAF V600E+ NSCLC: Study Endpoints²⁵

Primary Endpoint	Secondary Endpoints
 Investigator-assessed ORR All responses had to be confirmed based on RECIST v1.1 Independent review committee was also used 	 PFS DOR OS Safety Population pharmacokinetics

Dabrafenib + Trametinib in BRAF V600E+ NSCLC: Patient Cohort A²⁵

Patient Population	Cohort A (n = 78)	
Age, median (range), years	66 (28-85)	
Sex, n (%) Female/male	39 (50)/39 (50)	
Race, n (%) White Asian Black	59 (76) 17 (22) 2 (3)	
ECOG PS at baseline, n (%) 0/1/2	16 (21)/50 (64)/12 (15)	
Smoking history, n (%) Never smoked Smoker ≤ 30 pack-years ^a Smoker > 30 pack-years ^a	29 (37) 25 (32) 24 (31)	 Two-thirds of patients were current or former smokers
Histology at diagnosis, n (%) Adenocarcinoma Other	75 (96) 3 (4)	 Nearly all patients had adenocarcinoma histology
Prior systemic regimens for metastatic disease, n (%) 1 2 ≥ 3	40 (51) 14 (18) 24 (31)	 Almost half the patients were in second line and beyond

^a Among 49 smokers, 3 current smokers, and 46 former smokers.

Dabrafenib + Trametinib in BRAF V600E+ NSCLC: Patient Cohort B¹³

Patient Population	Cohort B		
Age, median (range), years	64 (58-71)		
Sex, n (%)			
Male/female	29 (51)/28 (49)		
Race, n (%)			
White	49 (86)		
Black	2 (4)		
Asian	4 (7)		
Other	2 (4)		
ECOG PS, n (%)			
0/1/2	17 (30)/35 (61)/5 (9)	_	
Histology at initial diagnosis, n (%)			Nearly all patients
Adenocarcinoma	56 (98)	┣━━	had adenocarcinoma
Large cell	1 (2)		histology
Smoking history, n (%)		1	Three-quarters of
Never smoker	16 (28)	┣━━	patients were current
Former smoker	35 (61)		or former smokers
Current smoker	6 (11)	1	
Prior systemic regimens for metastatic disease, n			One-third of patients
(%)	38 (67)	┣━━	received > 2 previous
1	19 (33)		lines of
2-3	()		cnemotherapy

Dabrafenib + Trametinib in BRAF V600E+ NSCLC: Patient Cohort C²⁶

Patient Population	Cohort C n = 36	
Age, median (range), years	67 (62-74)	
Sex, n (%) Male/female	14 (39)/22 (61)	
Race, n (%) White Native American or other Pacific Islander Black or African American Asian Missing	30 (83) 1 (3) 1 (3) 3 (8) 1 (3)	
ECOG PS, n (%)		
0/1/2	13 (36)/22 (61)/1 (3)	
Histology at initial diagnosis, n (%) Adenocarcinoma Adenosquamous carcinoma (predominantly adenocarcinoma) Adenosquamous carcinoma (predominantly SCC) Large-cell carcinoma NSCLC not otherwise specified	32 (89) 1 (3) 1 (3) 1 (3) 1 (3)	Nearly all patients had adenocarcinoma histology
Smoking history, n (%) Never Current Former	10 (28) 5 (14) 21 (58)	

22

Dabrafenib + Trametinib Phase 2 Study: Summary of Study Design and Patient Population^{13,25,26}

- Phase 2 study of dabrafenib and trametinibenrolled 169 patients with stage IV BRAF V600E+ NSCLC (based on local testing)
 - The primary endpoint was investigator-assessed ORR
- Patients who had no prior treatment with a BRAF or MEK inhibitor were enrolled in 3 cohorts
 - Cohort A (n = 78): Pretreated patients received dabrafenib monotherapy 150 mg BID
 - Cohort B (n = 57): Pretreated patients received dabrafenib 150 mg BID + trametinib 2 mg QD
 - Cohort C (n = 36): Treatment-naive patients received dabrafenib 150 mg BID + trametinib 2 mg QD
- The majority of patients enrolled had adenocarcinoma and were current/former smokers

Dabrafenib Monotherapy in Previously Treated Advanced BRAF V600E+ NSCLC²⁵

Investigator-Assessed Efficacy Results in Cohort A^a

Endpoint	n = 78
Best response, n (%) CR PR SD PD Not evaluable	0 26 (33) 19 (24) 23 (29) 10 (13)
ORR (confirmed CR + PR) (%	26 (33)
DCR (CR + PR + SD) %	45 (58)
DOR, median (95% CI), months	9.6 (5.4-15.2)
PFS, median (95% CI), months ^b	5.5 (2.8-6.9)
OS, median (95% CI), months	12.7 (7.3-16.9)

^a Data cutoff, November 21, 2014; ^b Independent review.

Dabrafenib + Trametinib in Previously Treated Advanced BRAF V600E+ NSCLC¹³

Efficacy Results in Cohort B^a

Endpoint	Investigator Assessment (n = 57)	Independent Assessment (n = 57)
Best response, n (%)		
CR	2 (4)	0
PR	34 (60)	36 (63)
SD ^b	9 (16)	4 (7)
PD	7 (12)	8 (14)
Non-CR/non-PD ^c	0	3 (5)
Not evaluable	5 (9)	6 (11)
ORR (CR + PR), n (%) [95% CI]	36 (63) [49-76]	36 (63) [49-76]
DCR, n (%) [95% CI]	45 (79) [66-89]	43 (75) [62-86]
DOR, median (95% CI), months ^a	9.0 (6.9-18.3)	9.0 (5.8-17.6)

• At the time of data cutoff, treatment was ongoing for 39% of patients (22 of 57)

For internal distribution only. May not be used, published, or otherwise disclosed without the consent of Novartis.

Results in Cohort B The Majority of Patients in Cohort B Experienced Tumor Shrinkage¹³

ORR: 63% (95% CI, 49%-76%)^a

NE patients did not have a follow-up scan required for confirmation.

a Data cutoff, October 7, 2015.

Results in Cohort B Median DOR With the Combination Was 9 Months in Previously Treated Patients¹³

Investigator Assessment (n = 36)

Reprinted from Planchard D, et al. Lancet Oncol. 2016;17(7):984-993, Copyright 2016, with permission from Elsevier.

27

Results in Cohort B Median PFS With the Combination Was Also ≈ 9 Months for Pretreated Patients^{13a}

 PFS with combination therapy was almost double what has been reported with dabrafenib monotherapy (9.7 mo vs 5.5 mo)

Reprinted from Planchard D, et al. Lancet Oncol. 2016;17(7):984-993, Copyright 2016, with permission from Elsevier. ^a Data cutoff, August 8, 2016.

NSCLCPROMODECK/RAFMEQ/ONCO/28785/28/FEB/2020

Dabrafenib + Trametinib in Previously Untreated Advanced BRAF V600E+ NSCLC²⁶

Efficacy Results in Cohort C

Endpoint	Investigator Assessment (n = 36)	Independent Assessment (n = 36)
Best response, n (%)		
CR	2 (6)	2 (6)
PR	21 (58)	21 (58)
SDb	4 (11)	3 (8)
PD	5 (14)	7 (19)
Not evaluable	4 (11)	3 (8)
ORR (CR + PR), n (%) [95% Cl]	23 (64) [46-79]	23 (64) [46-79]
DCR, n (%) [95% Cl]	27 (75) [58-88]	26 (72) [55-86]
DOR, median (95% CI), months ^a	10.4 (8.3-17.9)	15.2 (7.8-23.5)

• At the time of data cutoff^a, treatment was ongoing for 31% of patients (11 of 36)

^a Data cutoff, April 28, 2017

29

NSCLCPROMODECK/RAFMEQ/ONCO/28785/28/FEB/2020

Results in Cohort C The Majority of Patients in Cohort C Experienced Tumor Shrinkage²⁶

ORR: 64% (95% Cl, 46%-79%)^a

Image created based on Planchard D, et al. Lancet Oncol. 2017;18(10):1307-1316.

^a Data cutoff, April 28, 2017; ^b Two patients initially enrolled in cohort B were not included because they did not have a post-baseline assessment of target lesions

NSCLCPROMODECK/RAFMEQ/ONCO/28785/28/FEB/2020

Results in Cohort C Median DOR With the Combination by Investigator Assessment Was 10.4 Months in Previously Untreated Patients²⁶

• The number of patients with confirmed overall response was 23 (64%, 95% CI: 46-79)

Image created based on Planchard D, et al. Lancet Oncol. 2017;18(10):1307-1316.

Arrows indicate censored patients with follow-up ongoing. ^a Data cutoff, April 28, 2017; ^b Investigator assessed (n = 36)

31

Results in Cohort C Median PFS With the Combination by Investigator Assessment Was 10.9 Months for Untreated Patients^{26a}

• PFS with combination therapy was double what has been reported with dabrafenib monotherapy (10.9 mo vs 5.5 mo)

Image created based on Planchard D, et al. Lancet Oncol. 2017;18(10):1307-1316.

^a Data cutoff, April 28, 2017.

Dabrafenib + Trametinib Phase 2 Study: Efficacy Summary^{13,25,26}

 Dabrafenib + trametinib was more effective than dabrafenib alone in patients with previously treated BRAF V600E+ NSCLC: ORR and PFS were nearly doubled

Endpoint per Investigator Assessment	Cohort A Dabrafenib Monotherapy (n = 78)	Cohort B Dabrafenib + Trametinib Previously Treated (n = 57)	Cohort C Dabrafenib + Trametinib Previously Untreated (n = 36)
ORR ^a (95% CI), %	33 (23-45)	63 (49-76)	64 (46-79)
DCR ^a (95% CI), %	58 (46-67)	79 (66-87)	75 (58-88)
PFS ^a , median (95% Cl), mo	5.5 (3.4-7.3)	9.7 (6.9-19.6)	10.9 (7.0-16.6)
DOR ^a , median (95% Cl), mo	9.6 (5.4-15.2)	9.0 (6.9-18.3)	10.4 (8.3-17.9)

^aAll endpoints reported are as per investigator assessment

Safety Results in Cohort A Dabrafenib Monotherapy in BRAF V600E+ NSCLC²⁵

Most Common AEs (≥ 20%), n (%)	Grade 1/2	Grade 3/4
General		
Pyrexia	28 (33)	2 (2)
Asthenia	21 (25)	4 (5)
Hyperkeratosis	24 (29)	1 (1)
Decreased appetite	23 (27)	1 (1)
Cough	22 (26)	0
Fatigue	21 (25)	1 (1)
Skin		
Skin papilloma	22 (26)	0
Dry skin	19 (23)	0
Alopecia	18 (21)	0
Digestive		
Nausea	22 (26)	1 (1)

Results in Cohort B Safety Profile of Combined Dabrafenib + Trametinib in BRAF V600E+ NSCLC²⁷

AE Overview (n = 57)	All Grades n (%)	Grade 3/4 n (%)
AEs	56 (98)	24/4 (49)
Suspected to be drug related	51 (89)	16/2 (32)
Serious AEs	32 (56)	16/4 (35)
Suspected to be drug related	19 (33)	9/2 (19)
Fatal serious AEs	4 (7)	—
Suspected to be drug related	0	—
AEs leading to discontinuation	8 (14) ^a	4/0 (7)
AEs leading to dose reduction	20 (35)	8/1 (16)
AEs requiring dose interruption/delay	35 (61)	17/3 (35)

- Nearly all patients experienced ≥ 1 AE (98%), and almost half (49%) had a grade 3/4 AE
- However, there was a low discontinuation rate due to AEs (14%)

Categories are not mutually exclusive. Patients with multiple events in the same category are counted only once in that category. Patients with events in > 1 category are counted once in each of those categories.

^a One patient discontinued trametinib due to an AE but remained on study receiving dabrafenib only.

Results in Cohort B Safety Profile of Combined Dabrafenib + Trametinib in Previously Treated BRAF V600E+ NSCLC¹³

AEs ≥ 20%, n (%)	Grade 1/2	Grade 3	
General			
<u>Pyrexia</u>	25 (44)	1 (2)	
Asthenia	16 (28)	2 (4)	
Decreased appetite	17 (30)	0	
Chills	12 (21)	1 (2)	
Peripheral edema	13 (23)	0	
Cough	12 (21)	0	
Skin			
Dry skin	14 (25)	1 (2)	
Rash	11 (19)	1 (2)	
Digestive			
Nausea	23 (40)	0	
Vomiting	20 (35)	0	
Diarrhea	18 (32)	1 (2)	

Pyrexia was the most common AE (46% of patients); however, only 2% had grade 3 pyrexia

- SAEs were reported in 32 patients (56%)
- SAEs in ≥ 2 patients (4%) were pyrexia (16%), anemia (5%), and 4% each for confusional state, decreased appetite, hemoptysis, hypercalcemia, nausea, skin squamous cell carcinoma
- Fatal AEs occurred in 4 patients (retroperitoneal hemorrhage, subarachnoid hemorrhage, respiratory distress, and neoplasm progression), but all were considered unrelated to study medication

Safety Results in Cohort C Combined Dabrafenib + Trametinib in Previously Untreated BRAF V600E+ NSCLC²⁶

Most Common AEs (≥ 20%), n (%)	Grade 1/2	Grade 3		
General				
Pyrexia	19 (53)	4 (11)	Pyrexia was the most common AE (64% of patients)	
Fatigue	13 (36)	0		
Peripheral edema	13 (36)	0	 All patients had at least one AE of any grade 	
Decreased appetite	12 (33)	0		
Chills	9 (25)	0	 SAEs in ≥ 2 patients included ALI increase (14%), pyrexia (11%), AST 	
Headache	9 (25)	0	increase (8%), and ejection fraction	
Dizziness	8 (22)	0		
Cough	8 (22)	0	 AEs led to permanent discontinuation, dose interruption or 	
Skin			delay, and dose reduction in 22%,	
Dry skin	12 (33)	0	respectively	
Digestive			One fatal AE was reported	
Nausea	20 (56)	0	(cardiorespiratory arrest), but was	
Diarrhea	12 (33)	1 (3)	medication	
Vomiting	9 (25)	3 (8)		

3 Steps for Pyrexia Management in Patients Treated With Dabrafenib + Trametinib

INTERRUPT TREATMENT with dabrafenib if the patient's temperature is ≥38.5 °C. Continue trametinibat the same dose

2

3

INITIATE ANTIPYRETICS such as ibuprofen or acetaminophen/paracetamol

CONSIDER ORAL CORTICOSTEROIDS in those instances in which antipyretics are insufficient

Pyrexia Management Protocol for Patients Treated With Dabrafenib + Trametinib

ANY EVENT

- Clinical evaluation for infection and hypersensitivity
- Laboratory work-up
- Hydration as required

First event	 Administer antipyretic treatment if clinically indicated Interrupt dabrafenib (if on combination therapy, trametinib may continue) Once pyrexia resolves to baseline, restart dabrafenib at the same dose level If fever was associated with dehydration, hypotension, or renal insufficiency, reduce dabrafenib by 1 dose level
Second event	 Same as for first event and consider oral corticosteroids (ie, prednisone 10 mg) for ≥ 5 days or as clinically indicated
Subsequent events	 Interrupt dabrafenib Once pyrexia resolves to baseline, restart dabrafenib (consider 1-level dose reduction) Optimize oral corticosteroid dose as clinically indicated for recalcitrant pyrexia If corticosteroids have been tapered and pyrexia recurs, restart steroids If corticosteroids cannot be tapered or escalating doses are required, consult medical
	monitor

Dabrafenib + Trametinib) Dosing and Recommended Dose Reductions^{16,17}

	dabrafenib (dabrafenib)	Mekinst (trametinib)
Starting dose	150 mg (2 × 75 mg) twice daily (morning and evening)	2 mg once daily
First dose reduction	100 mg twice daily	1.5 mg once daily
Second dose reduction	75 mg twice daily	1 mg once daily
Third dose reduction (combination only)	50 mg twice daily	1 mg once daily
Subsequent modification	Permanently discontinue dabrafenib if unable to tolerate 50 mg orally twice daily	Permanently discontinue trametinibif unable to tolerate 1 mg orally once daily

- trametinibshould be take at the same time each day with either the morning dose OR evening dose of dabrafenib
- Both dabrafenib and trametinibshould be taken without food at least 1 hour before or 2 hours after a meal

Dabrafenib + Trametinib Phase 2 Study: Safety Summary

- The safety profile of dabrafenib + trametinib was manageable and similar to that previously reported in melanoma studies
- The most common AEs across all cohorts were pyrexia, GI-related toxicities, and skin reactions^{16,28}
- Pyrexia was the most frequently observed AE across all cohorts^{16,28}
 - Occurred in 33% of patients in cohort A (grades 1/2), 46% of patients in cohort B (all grades), and 64% of patients in cohort C (all grades)
 - Pyrexia events were managed with a pyrexia management protocol

References

- 1. Dibb NJ, et al. *Nat Rev Cancer.* 2004;4(9):718-727.
- 2. Sanchez-Torres, et al. *Transl Lung Cancer Res.* 2013;2(3):244-250.
- 3. Beeram M, et al. J Clin Oncol. 2005;23:6771-6790.
- 4. Kris MG, et al. JAMA. 2014;311(19):1998-2006.
- 5. Barlesi F, et al. Lancet. 2016;387(10026):1415-1426.
- 6. Kobayashi M, et al. *Anticancer Res.* 2011;31(12):4619-4623.
- 7. Paik P, et al. *J Clin Oncol.* 2011;29(15):2046-2051.
- 8. Cardarella S, et al. Clin Cancer Res. 2013;19:4532-4540.
- 9. Kinno T, et al. Ann Oncol. 2014;25:138-142.
- 10. Marchetti A, et al. J Clin Oncol. 2011;29(26):3574-3579.
- 11. NCCN Clinical Practice Guidelines in Oncology. Non-Small Cell Lung Cancer. V4.2018.
- 12. Novello S, et al. Ann Oncol. 2016;27:v1-v27.
- 13. Planchard D, et al. Lancet Oncol. 2016;17(5):642-650.
- 14. King AJ, et al. *PLoS One*. 2013;8(7):e67583.
- 15. Gilmartin AG, et al. *Clin Cancer Res.* 2011;17:989-1000.
- 16. dabrafenib[®] (dabrafenib mesilate) Summary of Product Characteristics. Camberley, UK: Novartis Europharm Limited; May 2018.
- 17. Meqsel[®] (trametinib) Summary of Product Characteristics. Novartis Europharm Limited: Dublin, Ireland; April 2018.
- 18. Swaika A, et al. *Drug Des Devel Ther.* 2014;8:775-787.

- 19. Long GV, et al. *Lancet.* 2015;386(20):444-451.
- 20. Robert C, et al. N Engl J Med. 2015;372(1):30-39.
- 21. Helwick C. Survival benefit in metastatic melanoma grows larger in COMBI-v update. http://www.ascopost.com/issues/november-10-2015/survival-benefitin-metastatic-melanoma-grows-larger-in-combi-v-update/. Accessed January 31, 2017.
- 22. Robert C, et al. 2015 European Cancer Congress [abstract 3301].
- 23. Bollag G, et al. *Nat Rev Drug Discov.* 2012;11:873-886.
- 24. Hyman DM, et al. N Engl J Med. 2015;373(8):726-736.
- 25. Planchard D, et al. *Lancet Oncol.* 2016;17(7):984-993.
- 26. Planchard D, et al. Lancet Oncol. 2017; 18: 1307-1316.
- 27. Planchard D, et al. J Clin Oncol. 2016;34(suppl) [abstract 107].
- 28. Daud A, et al. *Pigment Cell Melanoma Res.* 26; 932–1019.

42

THANKYOU